Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Ophthalmol Sci ; 4(3): 100444, 2024.
Article in English | MEDLINE | ID: mdl-38374928

ABSTRACT

Purpose: To investigate the genetic cause, clinical characteristics, and potential therapeutic targets of infantile corneal myofibromatosis. Design: Case series with genetic and functional in vitro analyses. Participants: Four individuals from 2 unrelated families with clinical signs of corneal myofibromatosis were investigated. Methods: Exome-based panel sequencing for platelet-derived growth factor receptor beta gene (PDGFRB) and notch homolog protein 3 gene (NOTCH3) was performed in the respective index patients. One clinically affected member of each family was tested for the pathogenic variant detected in the respective index by Sanger sequencing. Immunohistochemical staining on excised corneal tissue was conducted. Functional analysis of the individual PDGFRB variants was performed in vitro by luciferase reporter assays on transfected porcine aortic endothelial cells using tyrosine kinase inhibitors. Protein expression analysis of mutated PDGFRB was analyzed by Western blot. Main Outcome Measures: Sequencing data, immunohistochemical stainings, functional analysis of PDGFRB variants, and protein expression analysis. Results: We identified 2 novel, heterozygous gain-of-function variants in PDGFRB in 4 individuals from 2 unrelated families with corneal myofibromatosis. Immunohistochemistry demonstrated positivity for alpha-smooth muscle actin and ß-catenin, a low proliferation rate in Ki-67 (< 5%), marginal positivity for Desmin, and negative staining for Caldesmon and CD34. In all patients, recurrence of disease occurred after corneal surgery. When transfected in cultured cells, the PDGFRB variants conferred a constitutive activity to the receptor in the absence of its ligand and were sensitive to the tyrosine kinase inhibitor imatinib. The variants can both be classified as likely pathogenic regarding the American College of Medical Genetics and Genomics classification criteria. Conclusions: We describe 4 cases of corneal myofibromatosis caused by novel PDGFRB variants with autosomal dominant transmission. Imatinib sensitivity in vitro suggests perspectives for targeted therapy preventing recurrences in the future. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

2.
Hum Genet ; 143(1): 71-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38117302

ABSTRACT

Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks. In an international collaborative effort, data from 35 individuals ≥ 18 years with a molecularly ascertained CSS diagnosis (variants in ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, BICRA) using a comprehensive questionnaire was collected. Our results indicate that overweight and obesity are frequent in adults with CSS. Visual impairment, scoliosis, and behavioral anomalies are more prevalent than in published pediatric or mixed cohorts. Cognitive outcomes range from profound intellectual disability (ID) to low normal IQ, with most individuals having moderate ID. The present study describes the first exclusively adult cohort of CSS individuals. We were able to delineate some features of CSS that develop over time and have therefore been underrepresented in previously reported largely pediatric cohorts, and provide recommendations for follow-up.


Subject(s)
Abnormalities, Multiple , Face/abnormalities , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Adult , Humans , Child , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Micrognathism/genetics , Micrognathism/diagnosis , Hand Deformities, Congenital/genetics , Neck/abnormalities , Phenotype , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics
3.
EMBO Mol Med ; 15(7): e17528, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37292039

ABSTRACT

Osteogenesis imperfecta (OI) is a hereditary skeletal disorder primarily affecting collagen type I structure and function, causing bone fragility and occasionally versatile extraskeletal symptoms. This study expands the spectrum of OI-causing TAPT1 mutations and links extracellular matrix changes to signaling regulation.


Subject(s)
Osteogenesis Imperfecta , Humans , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/diagnosis , Collagen Type I/genetics , Extracellular Matrix , Mutation , Signal Transduction
5.
J Med Genet ; 59(7): 697-705, 2022 07.
Article in English | MEDLINE | ID: mdl-34321323

ABSTRACT

BACKGROUND: O'Donnell-Luria-Rodan syndrome (ODLURO) is an autosomal-dominant neurodevelopmental disorder caused by pathogenic, mostly truncating variants in KMT2E. It was first described by O'Donnell-Luria et al in 2019 in a cohort of 38 patients. Clinical features encompass macrocephaly, mild intellectual disability (ID), autism spectrum disorder (ASD) susceptibility and seizure susceptibility. METHODS: Affected individuals were ascertained at paediatric and genetic centres in various countries by diagnostic chromosome microarray or exome/genome sequencing. Patients were collected into a case cohort and were systematically phenotyped where possible. RESULTS: We report 18 additional patients from 17 families with genetically confirmed ODLURO. We identified 15 different heterozygous likely pathogenic or pathogenic sequence variants (14 novel) and two partial microdeletions of KMT2E. We confirm and refine the phenotypic spectrum of the KMT2E-related neurodevelopmental disorder, especially concerning cognitive development, with rather mild ID and macrocephaly with subtle facial features in most patients. We observe a high prevalence of ASD in our cohort (41%), while seizures are present in only two patients. We extend the phenotypic spectrum by sleep disturbances. CONCLUSION: Our study, bringing the total of known patients with ODLURO to more than 60 within 2 years of the first publication, suggests an unexpectedly high relative frequency of this syndrome worldwide. It seems likely that ODLURO, although just recently described, is among the more common single-gene aetiologies of neurodevelopmental delay and ASD. We present the second systematic case series of patients with ODLURO, further refining the mutational and phenotypic spectrum of this not-so-rare syndrome.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Autism Spectrum Disorder/genetics , Child , Humans , Intellectual Disability/diagnosis , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Seizures/epidemiology , Seizures/genetics , Syndrome , Exome Sequencing
6.
Am J Hum Genet ; 107(5): 989-999, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33053334

ABSTRACT

Osteogenesis imperfecta (OI) is characterized primarily by susceptibility to fractures with or without bone deformation. OI is genetically heterogeneous: over 20 genetic causes are recognized. We identified bi-allelic pathogenic KDELR2 variants as a cause of OI in four families. KDELR2 encodes KDEL endoplasmic reticulum protein retention receptor 2, which recycles ER-resident proteins with a KDEL-like peptide from the cis-Golgi to the ER through COPI retrograde transport. Analysis of patient primary fibroblasts showed intracellular decrease of HSP47 and FKBP65 along with reduced procollagen type I in culture media. Electron microscopy identified an abnormal quality of secreted collagen fibrils with increased amount of HSP47 bound to monomeric and multimeric collagen molecules. Mapping the identified KDELR2 variants onto the crystal structure of G. gallus KDELR2 indicated that these lead to an inactive receptor resulting in impaired KDELR2-mediated Golgi-ER transport. Therefore, in KDELR2-deficient individuals, OI most likely occurs because of the inability of HSP47 to bind KDELR2 and dissociate from collagen type I. Instead, HSP47 remains bound to collagen molecules extracellularly, disrupting fiber formation. This highlights the importance of intracellular recycling of ER-resident molecular chaperones for collagen type I and bone metabolism and a crucial role of HSP47 in the KDELR2-associated pathogenic mechanism leading to OI.


Subject(s)
Bone and Bones/metabolism , Collagen Type I/metabolism , HSP47 Heat-Shock Proteins/metabolism , Osteogenesis Imperfecta/genetics , Vesicular Transport Proteins/metabolism , Adult , Alleles , Amino Acid Sequence , Animals , Binding Sites , Bone and Bones/pathology , Chickens , Child, Preschool , Collagen Type I/chemistry , Collagen Type I/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression , Golgi Apparatus/metabolism , Golgi Apparatus/pathology , HSP47 Heat-Shock Proteins/chemistry , HSP47 Heat-Shock Proteins/genetics , Humans , Infant , Male , Osteogenesis Imperfecta/diagnosis , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/pathology , Pedigree , Primary Cell Culture , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Protein Transport , Sequence Alignment , Sequence Homology, Amino Acid , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics
7.
Mol Cell Pediatr ; 7(1): 9, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32797291

ABSTRACT

Osteogenesis imperfecta (OI) is a rare congenital disease with a wide spectrum of severity characterized by skeletal deformity and increased bone fragility as well as additional, variable extraskeletal symptoms. Here, we present an overview of the genetic heterogeneity and pathophysiological background of OI as well as OI-related bone fragility disorders and highlight current therapeutic options.The most common form of OI is caused by mutations in the two collagen type I genes. Stop mutations usually lead to reduced collagen amount resulting in a mild phenotype, while missense mutations mainly provoke structural alterations in the collagen protein and entail a more severe phenotype. Numerous other causal genes have been identified during the last decade that are involved in collagen biosynthesis, modification and secretion, the differentiation and function of osteoblasts, and the maintenance of bone homeostasis.Management of patients with OI involves medical treatment by bisphosphonates as the most promising therapy to inhibit bone resorption and thereby facilitate bone formation. Surgical treatment ensures pain reduction and healing without an increase of deformities. Timely remobilization and regular strengthening of the muscles by physiotherapy are crucial to improve mobility, prevent muscle wasting and avoid bone resorption caused by immobilization. Identification of the pathomechanism for SERPINF1 mutations led to the development of a tailored mechanism-based therapy using denosumab, and unraveling further pathomechanisms will likely open new avenues for innovative treatment approaches.

8.
Am J Hum Genet ; 105(4): 836-843, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31564437

ABSTRACT

Osteogenesis imperfecta (OI) comprises a genetically heterogeneous group of skeletal fragility diseases. Here, we report on five independent families with a progressively deforming type of OI, in whom we identified four homozygous truncation or frameshift mutations in MESD. Affected individuals had recurrent fractures and at least one had oligodontia. MESD encodes an endoplasmic reticulum (ER) chaperone protein for the canonical Wingless-related integration site (WNT) signaling receptors LRP5 and LRP6. Because complete absence of MESD causes embryonic lethality in mice, we hypothesized that the OI-associated mutations are hypomorphic alleles since these mutations occur downstream of the chaperone activity domain but upstream of ER-retention domain. This would be consistent with the clinical phenotypes of skeletal fragility and oligodontia in persons deficient for LRP5 and LRP6, respectively. When we expressed wild-type (WT) and mutant MESD in HEK293T cells, we detected WT MESD in cell lysate but not in conditioned medium, whereas the converse was true for mutant MESD. We observed that both WT and mutant MESD retained the ability to chaperone LRP5. Thus, OI-associated MESD mutations produce hypomorphic alleles whose failure to remain within the ER significantly reduces but does not completely eliminate LRP5 and LRP6 trafficking. Since these individuals have no eye abnormalities (which occur in individuals completely lacking LRP5) and have neither limb nor brain patterning defects (both of which occur in mice completely lacking LRP6), we infer that bone mass accrual and dental patterning are more sensitive to reduced canonical WNT signaling than are other developmental processes. Biologic agents that can increase LRP5 and LRP6-mediated WNT signaling could benefit individuals with MESD-associated OI.


Subject(s)
Molecular Chaperones/genetics , Mutation , Osteogenesis Imperfecta/genetics , Animals , Female , Genes, Recessive , HEK293 Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Male , Mice , Pedigree , Phenotype , Wnt Signaling Pathway
9.
Orphanet J Rare Dis ; 14(1): 219, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31533771

ABSTRACT

BACKGROUND: Osteogenesis imperfecta (OI) is a rare disease leading to hereditary bone fragility. Nearly 90% of cases are caused by mutations in the collagen genes COL1A1/A2 (classical OI) leading to multiple fractures, scoliosis, short stature and nonskeletal findings as blue sclera, hypermobility of joints, bone pain and delayed motor function development. Bisphosphonates are used in most moderate and severely affected patients assuming that an increase of bone mineral density might reduce fractures and bone pain in patients with OI. Denosumab as a RANK ligand antibody inhibiting osteoclast maturation has been approved for osteoporosis treatment in adults. First data from small clinical trials promised a high efficacy of Denosumab in children with OI. Aim of this analysis was a retrospective evaluation of an individualized biomarker-associated treatment regime with Denosumab in 10 children with classical OI which were followed for 1 year after their participation in a pilot trial with Denosumab. Therefore urinary deoxypyridinoline levels were evaluated frequently as an osteoclastic activity marker and depending on that levels Denosumab injections were scheduled individually. METHODS: Ten patients (age range: 6.16-12.13 years; all participated in the former OI-AK phase 2 trial (NCT01799798)) were included in the follow-up period. Denosumab was administered subcutaneously depending on the individual urinary excretion course of deoxypyridinoline (DPD/Crea) as osteoclastic activity marker with 1 mg/kg body weight. DPD/Crea levels were evaluated before denosumab administration and afterwards. If patients present after an initial decrease after injection with a re-increase up to the DPD/crea level before Denosumab injection next dosage was planned. Changes of areal bone mineral density (aBMD) using dual energy x-ray absorptiometry of the lumbar spine after 12 month was evaluated. Safety was assessed by bone metabolism markers and side effect reporting. RESULTS: During follow-up mean relative change of lumbar aBMD was - 6.4%. Lumbar spine aBMD z-Scores decreased from - 1.01 ± 2.61 (mean ± SD) to - 1.91 ± 2.12 (p = 0.015). Mobility changed not significantly (GMFM-88 -6.49 ± 8.85% (p = 0.08). No severe side effects occurred. Dose intervals could be extended in the mean from 12 weeks previously to 20.3 weeks. CONCLUSIONS: On average, it was possible to prolong the intervals between drug administrations and to reduce the total dose about by 25% without a decrease of mobility or change of vertebral shape despite a reduction of lumbar aBMD during 1 year of biomarker-directed Denosumab treatment. Further trials are necessary to balance side effects and highest efficacy in children.


Subject(s)
Denosumab/therapeutic use , Osteogenesis Imperfecta/drug therapy , Bone Density/drug effects , Bone Density Conservation Agents/therapeutic use , Child , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Diphosphonates/therapeutic use , Female , Follow-Up Studies , Humans , Hypercalciuria/drug therapy , Male , Mutation/genetics , Retrospective Studies
10.
Am J Hum Genet ; 104(4): 749-757, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30905398

ABSTRACT

Over a relatively short period of time, the clinical geneticist's "toolbox" has been expanded by machine-learning algorithms for image analysis, which can be applied to the task of syndrome identification on the basis of facial photographs, but these technologies harbor potential beyond the recognition of established phenotypes. Here, we comprehensively characterized two individuals with a hitherto unknown genetic disorder caused by the same de novo mutation in LEMD2 (c.1436C>T;p.Ser479Phe), the gene which encodes the nuclear envelope protein LEM domain-containing protein 2 (LEMD2). Despite different ages and ethnic backgrounds, both individuals share a progeria-like facial phenotype and a distinct combination of physical and neurologic anomalies, such as growth retardation; hypoplastic jaws crowded with multiple supernumerary, yet unerupted, teeth; and cerebellar intention tremor. Immunofluorescence analyses of patient fibroblasts revealed mutation-induced disturbance of nuclear architecture, recapitulating previously published data in LEMD2-deficient cell lines, and additional experiments suggested mislocalization of mutant LEMD2 protein within the nuclear lamina. Computational analysis of facial features with two different deep neural networks showed phenotypic proximity to other nuclear envelopathies. One of the algorithms, when trained to recognize syndromic similarity (rather than specific syndromes) in an unsupervised approach, clustered both individuals closely together, providing hypothesis-free hints for a common genetic etiology. We show that a recurrent de novo mutation in LEMD2 causes a nuclear envelopathy whose prognosis in adolescence is relatively good in comparison to that of classical Hutchinson-Gilford progeria syndrome, and we suggest that the application of artificial intelligence to the analysis of patient images can facilitate the discovery of new genetic disorders.


Subject(s)
Membrane Proteins/genetics , Mutation , Nuclear Proteins/genetics , Progeria/genetics , Adolescent , Artificial Intelligence , Cell Line, Tumor , Cell Nucleus , Child , Child, Preschool , Diagnosis, Computer-Assisted , Face , Fibroblasts/metabolism , Humans , Male , Mass Screening/methods , Medical Informatics , Phenotype , Prognosis , Syndrome
11.
Mol Cell Probes ; 45: 84-88, 2019 06.
Article in English | MEDLINE | ID: mdl-30914295

ABSTRACT

When deciding on which genes to assess in larger Next-Generation Sequencing (NGS) datasets for the molecular genetic diagnosis of intellectual disability (ID), geneticists today have a variety of gene-phenotype databases and expert-curated gene lists available. To quantify their respective completeness, we compare an ID gene selection auto-generated from the Human Phenotype Ontology gene-phenotype association database and expert-curated ID gene lists from three reputable sources (sysID, the DDD consortium and Genomics England) and analyse some of their differences. We give examples of what we regard as genuine gaps ("missing ID genes") for each of these and conclude that a complementary or consensus approach is needed to maximise diagnostic yield in ID patients. We propose several consensus gene lists with ID-associated genes of different confidence levels.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/methods , Intellectual Disability/genetics , Consensus , Data Curation , Databases, Genetic , Genetic Predisposition to Disease , Humans , Sequence Analysis, DNA
12.
J Lipid Res ; 59(8): 1529-1535, 2018 08.
Article in English | MEDLINE | ID: mdl-29866657

ABSTRACT

Copy-number variations (CNVs) have been studied in the context of familial hypercholesterolemia but have not yet been evaluated in patients with extreme levels of HDL cholesterol. We evaluated targeted, next-generation sequencing data from patients with very low levels of HDL cholesterol (i.e., hypoalphalipoproteinemia) with the VarSeq-CNV® caller algorithm to screen for CNVs that disrupted the ABCA1, LCAT, or APOA1 genes. In four individuals, we found three unique deletions in ABCA1: a heterozygous deletion of exon 4, a heterozygous deletion that spanned exons 8 to 31, and a heterozygous deletion of the entire ABCA1 gene. Breakpoints were identified with Sanger sequencing, and the full-gene deletion was confirmed by using exome sequencing and the Affymetrix CytoScan HD array. Previously, large-scale deletions in candidate HDL genes had not been associated with hypoalphalipoproteinemia; our findings indicate that CNVs in ABCA1 may be a previously unappreciated genetic determinant of low levels of HDL cholesterol. By coupling bioinformatic analyses with next-generation sequencing data, we can successfully assess the spectrum of genetic determinants of many dyslipidemias, including hypoalphalipoproteinemia.


Subject(s)
ATP Binding Cassette Transporter 1/deficiency , ATP Binding Cassette Transporter 1/genetics , Gene Deletion , Hypoalphalipoproteinemias/genetics , Adult , Computational Biology , DNA Copy Number Variations , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged
13.
Eur J Hum Genet ; 26(9): 1392-1395, 2018 09.
Article in English | MEDLINE | ID: mdl-29891879

ABSTRACT

Complete uniparental isodisomy (iUPD)-the presence of two identical chromosomes in an individual that originate from only a single parental homolog-is an underestimated cause of recessive Mendelian disease in humans. Correctly identifying iUPD in an index patient is of enormous consequence to correctly counseling the family/couple, as the recurrence risk for siblings is reduced from 25% to usually <1%. In medium/large-scale NGS analyses, we found that complete iUPD can be rapidly and straightforwardly inferred from a singleton dataset (index patient only) through a simple chromosome- and genotype-filtering step in <1 min. We discuss the opportunities of iUPD detection in medium/large-scale NGS analyses by example of a case of CHRNG-associated multiple pterygium syndrome due to complete maternal iUPD. Using computer simulations for several detection thresholds, we validate and estimate sensitivity, specificity, positive (PPV), and negative predictive values (NPV) of the proposed screening method for reliable detection of complete iUPD. When screening for complete iUPD, our models suggest that a >85% proportion of homozygous calls on a single chromosome with ≥30 sufficiently interspaced called variants results in a sensitivity of 97.9% and specificity of 99.7%. The PPV is 95.1%, the NPV 99.9%. When this threshold is exceeded for a chromosome on which a patient harbors an apparently homozygous disease-associated variant, it should be sufficient cause to discuss iUPD as a plausible or probable mechanism of disease in the genetic analysis report, even when parental segregation has not (yet) been performed.


Subject(s)
Aborted Fetus/pathology , Genetic Testing/standards , Prenatal Diagnosis/methods , Sequence Analysis, DNA/standards , Uniparental Disomy/genetics , Aborted Fetus/diagnostic imaging , Adult , Diagnostic Errors , Female , Genes, Recessive , Humans , Male , Uniparental Disomy/diagnosis
14.
Am J Hum Genet ; 101(5): 833-843, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100093

ABSTRACT

Gorlin-Chaudhry-Moss syndrome (GCMS) is a dysmorphic syndrome characterized by coronal craniosynostosis and severe midface hypoplasia, body and facial hypertrichosis, microphthalmia, short stature, and short distal phalanges. Variable lipoatrophy and cutis laxa are the basis for a progeroid appearance. Using exome and genome sequencing, we identified the recurrent de novo mutations c.650G>A (p.Arg217His) and c.649C>T (p.Arg217Cys) in SLC25A24 in five unrelated girls diagnosed with GCMS. Two of the girls had pronounced neonatal progeroid features and were initially diagnosed with Wiedemann-Rautenstrauch syndrome. SLC25A24 encodes a mitochondrial inner membrane ATP-Mg/Pi carrier. In fibroblasts from affected individuals, the mutated SLC25A24 showed normal stability. In contrast to control cells, the probands' cells showed mitochondrial swelling, which was exacerbated upon treatment with hydrogen peroxide (H2O2). The same effect was observed after overexpression of the mutant cDNA. Under normal culture conditions, the mitochondrial membrane potential of the probands' fibroblasts was intact, whereas ATP content in the mitochondrial matrix was lower than that in control cells. However, upon H2O2 exposure, the membrane potential was significantly elevated in cells harboring the mutated SLC25A24. No reduction of mitochondrial DNA copy number was observed. These findings demonstrate that mitochondrial dysfunction with increased sensitivity to oxidative stress is due to the SLC25A24 mutations. Our results suggest that the SLC25A24 mutations induce a gain of pathological function and link mitochondrial ATP-Mg/Pi transport to the development of skeletal and connective tissue.


Subject(s)
Abnormalities, Multiple/genetics , Antiporters/genetics , Calcium-Binding Proteins/genetics , Craniofacial Abnormalities/genetics , Craniosynostoses/genetics , Ductus Arteriosus, Patent/genetics , Hypertrichosis/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mutation/genetics , Adenosine Triphosphate/genetics , Adolescent , Child , Child, Preschool , Cutis Laxa/genetics , DNA, Mitochondrial/genetics , Exome/genetics , Female , Fetal Growth Retardation/genetics , Fibroblasts/pathology , Growth Disorders , Humans , Hydrogen Peroxide/pharmacology , Infant , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/genetics , Mitochondria/drug effects , Oxidative Stress/genetics , Progeria/genetics
15.
Am J Med Genet A ; 173(8): 2132-2138, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28574232

ABSTRACT

Recently, a new syndrome with intellectual disability (ID) and dysmorphic features due to deletions or point mutations within the TBL1XR1 gene located in the chromosomal band 3q26.32 has been described (MRD41, OMIM 616944). One recurrent point mutation in the TBL1XR1 gene has been identified as the cause of Pierpont syndrome (OMIM 602342), a distinct intellectual disability syndrome with plantar lipomatosis. In addition, different de novo point mutations in the TBL1XR1 gene have been found in patients with autism spectrum disorders (ASD) and intellectual disability. Here, we report four patients from two unrelated families in whom array-CGH analysis and real-time quantitative PCR of genomic DNA revealed a TBL1XR1-microduplication. Adjacent genes were not affected. The microduplication occurred as a de novo event in one patient, whereas the other three cases occurred in two generations of a second, unrelated family. We compare and contrast the clinical findings in TBL1XR1 microdeletion, point mutation, and microduplication cases and expand the TBL1XR1-associated phenotypic spectrum. ID, hearing loss, and ASD are common features of TBL1XR1-associated diseases. Our clinical observations add to the increasing evidence of the role of TBL1XR1 in brain development, and they simultaneously demonstrate that different genetic disease mechanisms affecting TBL1XR1 can lead to similar ID phenotypes. The TBL1XR1-microduplication syndrome is an intellectual disability/learning disability syndrome with associated incomplete penetrance ASD, hearing loss, and delay of puberty. Its phenotypic overlap indicates that it is a genomic sister-disorder to the 3q26.32 microdeletion syndrome.


Subject(s)
Autism Spectrum Disorder/genetics , Hearing Loss/genetics , Intellectual Disability/genetics , Nuclear Proteins/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Adolescent , Adult , Autism Spectrum Disorder/physiopathology , Child , Chromosomes, Human, Pair 3/genetics , Comparative Genomic Hybridization , Female , Gene Duplication , Genomics , Hearing Loss/physiopathology , Humans , Intellectual Disability/physiopathology , Male , Sexual Maturation/genetics , Siblings
17.
Hum Mutat ; 37(9): 847-64, 2016 09.
Article in English | MEDLINE | ID: mdl-27302555

ABSTRACT

Kabuki syndrome (KS) is a rare but recognizable condition that consists of a characteristic face, short stature, various organ malformations, and a variable degree of intellectual disability. Mutations in KMT2D have been identified as the main cause for KS, whereas mutations in KDM6A are a much less frequent cause. Here, we report a mutation screening in a case series of 347 unpublished patients, in which we identified 12 novel KDM6A mutations (KS type 2) and 208 mutations in KMT2D (KS type 1), 132 of them novel. Two of the KDM6A mutations were maternally inherited and nine were shown to be de novo. We give an up-to-date overview of all published mutations for the two KS genes and point out possible mutation hot spots and strategies for molecular genetic testing. We also report the clinical details for 11 patients with KS type 2, summarize the published clinical information, specifically with a focus on the less well-defined X-linked KS type 2, and comment on phenotype-genotype correlations as well as sex-specific phenotypic differences. Finally, we also discuss a possible role of KDM6A in Kabuki-like Turner syndrome and report a mutation screening of KDM6C (UTY) in male KS patients.


Subject(s)
Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Hematologic Diseases/genetics , Histone Demethylases/genetics , Mutation , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Vestibular Diseases/genetics , Abnormalities, Multiple/pathology , Face/pathology , Female , Genes, X-Linked , Genetic Predisposition to Disease , Hematologic Diseases/pathology , Humans , Male , Maternal Inheritance , Noonan Syndrome/genetics , Sequence Analysis, DNA , Vestibular Diseases/pathology
18.
Wien Med Wochenschr ; 165(13-14): 278-84, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26055811

ABSTRACT

Osteogenesis imperfecta is a rare hereditary disease mostly caused by mutations impairing collagen synthesis and modification. Recently recessive forms have been described influencing differentiation and activity of osteoblasts and osteoclasts. Most prominent signs are fractures due to low traumata and deformities of long bones and vertebrae. Additional patients can be affected by dwarfism, scoliosis Dentinogenesis imperfecta, deafness and a blueish discoloration of the sclera. During childhood state of the art medical treatment are i.v. bisphosphonates to increase bone mass and to reduce fracture rate. Surgical interventions are needed to treat fractures, to correct deformities and should always be accompanied by physiotherapeutic and rehabilitative interventions.


Subject(s)
Osteogenesis Imperfecta/physiopathology , Osteogenesis Imperfecta/therapy , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Combined Modality Therapy , DNA Mutational Analysis , Diphosphonates/administration & dosage , Female , Fracture Fixation , Fractures, Spontaneous/genetics , Fractures, Spontaneous/physiopathology , Fractures, Spontaneous/therapy , Genetic Carrier Screening , Humans , Infant , Infant, Newborn , Infusions, Intravenous , Male , Osteoblasts/physiology , Osteoclasts/physiology , Osteogenesis Imperfecta/genetics , Physical Therapy Modalities
19.
Am J Hum Genet ; 96(3): 432-9, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25683121

ABSTRACT

As a result of a whole-exome sequencing study, we report three mutant alleles in SEC24D, a gene encoding a component of the COPII complex involved in protein export from the ER: the truncating mutation c.613C>T (p.Gln205(∗)) and the missense mutations c.3044C>T (p.Ser1015Phe, located in a cargo-binding pocket) and c.2933A>C (p.Gln978Pro, located in the gelsolin-like domain). Three individuals from two families affected by a similar skeletal phenotype were each compound heterozygous for two of these mutant alleles, with c.3044C>T being embedded in a 14 Mb founder haplotype shared by all three. The affected individuals were a 7-year-old boy with a phenotype most closely resembling Cole-Carpenter syndrome and two fetuses initially suspected to have a severe type of osteogenesis imperfecta. All three displayed a severely disturbed ossification of the skull and multiple fractures with prenatal onset. The 7-year-old boy had short stature and craniofacial malformations including macrocephaly, midface hypoplasia, micrognathia, frontal bossing, and down-slanting palpebral fissures. Electron and immunofluorescence microscopy of skin fibroblasts of this individual revealed that ER export of procollagen was inefficient and that ER tubules were dilated, faithfully reproducing the cellular phenotype of individuals with cranio-lentico-sutural dysplasia (CLSD). CLSD is caused by SEC23A mutations and displays a largely overlapping craniofacial phenotype, but it is not characterized by generalized bone fragility and presented with cataracts in the original family described. The cellular and morphological phenotypes we report are in concordance with the phenotypes described for the Sec24d-deficient fish mutants vbi (medaka) and bulldog (zebrafish).


Subject(s)
Craniosynostoses/genetics , Eye Abnormalities/genetics , Hydrocephalus/genetics , Osteogenesis Imperfecta/genetics , Vesicular Transport Proteins/genetics , Alleles , Animals , Bone and Bones/pathology , Child , Endoplasmic Reticulum/metabolism , Female , Heterozygote , Humans , Male , Mutation, Missense , Pedigree , Phenotype , Protein Conformation , Sequence Analysis, DNA , Vesicular Transport Proteins/metabolism , Zebrafish/genetics
20.
Orphanet J Rare Dis ; 9: 145, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25257953

ABSTRACT

BACKGROUND: Osteogenesis imperfecta (OI) is a hereditary disease causing reduced bone mass, increased fracture rate, long bone deformities and vertebral compressions. Additional non skeletal findings are caused by impaired collagen function and include hyperlaxity of joints and blue sclera. Most OI cases are caused by dominant mutations in COL1A1/2 affecting bone formation. During the last years, recessive forms of OI have been identified, mostly affecting posttranslational modification of collagen. In 2011, mutations in SERPINF1 were identified as the molecular cause of OI type VI, and thereby a novel pathophysiology of the disease was elucidated. The subgroup of patients with OI type VI are affected by an increased bone resorption, leading to the same symptoms as observed in patients with an impaired bone formation. Severely affected children are currently treated with intravenous bisphosphonates regardless of the underlying mutation and pathophysiology. Patients with OI type VI are known to have a poor response to such a bisphosphonate treatment. METHOD: Deciphering the genetic cause of OI type VI in our 4 patients (three children and one adolescent) led to an immediate translational approach in the form of a treatment with the monoclonal RANKL antibody Denosumab (1 mg/kg body weight every 12 weeks). RESULTS: Short-term biochemical response to this treatment was reported previously. We now present the results after 2 years of treatment and demonstrate a long term benefit as well as an increase of bone mineral density, a normalization of vertebral shape, an increase of mobility, and a reduced fracture rate. CONCLUSION: This report presents the first two-year data of denosumab treatment in patients with Osteogenesis imperfecta type VI and in Osteogenesis imperfecta in general as an effective and apparently safe treatment option.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Osteogenesis Imperfecta/diagnostic imaging , Osteogenesis Imperfecta/drug therapy , RANK Ligand/antagonists & inhibitors , Antibodies, Monoclonal, Humanized/pharmacology , Bone Density/drug effects , Bone Density/physiology , Child , Denosumab , Female , Humans , Male , Radiography , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...